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SUMMARY 

In this paper a new type of transient multidimensional two-fluid model has been applied to simulate 
intermittent or slug flow problems. Three different approaches to modelling interfacial friction, including an 
interfacial tracking scheme, have been investigated. The numerial method is based on an implicit finite 
difference scheme, solved directly in two steps applying a separate equation for the pressure, 2D predictions 
of Taylor bubble propagation in horizontal and inclined channels have been compared with experimental 
data and analytical solutions. The 2D model has also been applied to investigate a number of special 
phenomena in slug flow, including slug initiation, bubble turning in downflow and the bubble centring 
process at large liquid flow rates. 
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1. INTRODUCTION 

Details of multiphase flow presently have to be studied through extensive experiments, as only in 
special cases 2-3D models can be applied with confidence. For two-phase flow, however, at least 
three general purpose codes (FLUENT, FLOW-3D and PHOENICS) are available, as well as 
a series of more problem-oriented models. All these apply finite difference schemes, based mainly 
on the work of Patankar and Spalding, and are generally limited to dispersed flows or particle 
tracking. A different approach to steady 2-3 modelling of bubbly two-phase flow has recently 
been proposed by Antal et al.,' based on a Galerkin type of finite element method. 

Modelling separated or stratified flow in general is complicated by two factors: the interface 
location and the interfacial wave pattern. Both are physical manifestations of the particular 
two-phase flow itself, and must be treated as integral parts of any model of the flow by 
determining, for example, interfacial friction and overall pressure drop. Hirt and Nichols2 
proposed an algorithm to track free surfaces or interfaces between two fluids. Their model is, 
however, a modified single-phase description, with explicit updating of interface locations. 

In this work a 2-3D transient model proposed by Moe and Bendiksen3 has been applied. 
Closure laws are still not general, but are focused on separated or stratified flow problems. Three 
different approaches to modelling interfacial friction, including a volume of fluid donor-acceptor 
interfacial friction scheme, have been investigated. The numerical scheme is based on an extension 
of the one-dimensional models of Bendiksen et d 4 ? l 3  A 'volume' equation is applied for the 
pressure, allowing a direct two-step solution procedure. First the. pressure and velocities are 
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solved implicitly from the volume and momentum equations, and then the specific masses are 
solved from the continuity equations. These linearized equations sets are solved directly by 
applying a Gaussian band solver and avoiding an iterative solution procedure. 

Predictions of Taylor bubble propagation in horizontal and inclined channels have been 
compared with experimental data and analytical solutions. The model is also shown to simulate 
a number of different special phenomena of slug flow, including slug initiation, Taylor bubble 
turning in downflow, and the process of Taylor bubble centring at high liquid flow rates. 

2. PHYSICAL MODEL 

2.1. Basic conservation equations 

The model of Moe and Bendiksen3 was developed considering the local instantaneous two- 
fluid formulation of each phase, imposing appropriate averaging and thus obtaining a set of time- 
and space-averaged conservation equations. In the averaging process a single (fluctuating) time or 
spatial scale has been assumed, important characteristics of the flow field are lost and must be 
reintroduced into the model through appropriate closure laws. A common pressure field is 
applied, mass transfer between the phases has been neglected, and a constant-temperature field 
assumed. The mass and momentum balances for each k (k = f, g) are then expressed as follows: 

Conservation of mass 

(1) 
a 
- (@-kPk) + v ( U k P k U k )  = 0. 
Bt 

Conservation of momentum 

a 
- ( a k p k u k )  + ' (a&PkUkUk) = - v ( a & P k )  + U k P k g  + v. [ak (Tk + ZkT)] + M k  at (2) 

and the relation 
a g + a c = l ,  (3) 

where u k  denotes the velocity, p the pressure, P k  the density, z k  the viscous shear stress, 7: the 
turbulent flux, g the acceleration due to gravity and t l k  the volumetric fraction of phase k. The 
term M k  represents the interfacial momentum transfer. 

2.2. Closure relations 

Separated and intermittent pow regime description. This work is focused on flows with relatively 
large separating interfaces between the fluids, such as elongated bubbles. The interfacial mo- 
mentum transfer, M k ,  is expressed as 

M k  = Mlf + PkiV a k  - T k i V a k  - T z i v  a k ,  (4) 
when omitting mass transfer between the phases. This relation and the momentum equations can 
be simplified further by neglecting surface tension and assuming a common pressure field for the 
two phases, as discussed by Moe and Bendik~en.~ For separated flows the interfacial momentum 
transfer is due to normal and tangential stress (drag), and to the level of turbulence at the 
interface. 

For an ordinary two-fluid model the ratio between the phases is. given by the volumetric 
fractions, a,, at, of each phase. The position of the interface itself has to be specified in terms of 
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mean quantities. The interface in gravity-dominated flows is often assumed to be located where 
the volumetric fraction is 0.5, as suggested by Liu and S~alding.~ Its position is then obtained 
simply by plotting the contour line of as = ctC =0.5. This approach will, however, lead to a strong 
diffusion of the interface. 

An improved method to track the interface between two fluids was proposed by Hirt and 
Nichols2 Their ‘volume of fluid’ (VOF) method consists of a set of single-phase equations in 
addition to a fractional volume of fluid function, F .  The value of this function is unity or zero at 
any point occupied by either of the fluids. When applying the function F in a computational mesh 
(see Figure l), the averaged value of F in a cell is equal to the fractional volume of the cell 
occupied by the fluids. The function F is also used to locate the fluids in the cell. This information 
is used together with the donor-acceptor method described by Johnson6 to calculate the mass 
flux with a minimal diffusion of the interface. 

The essential idea of the donor-acceptor method is to use information on the interface 
orientation in the upstream cell to calculate the flux across each cell boundary in the downstream 
direction. The orientation of the interface has to be approached by a step function; see Figure 2. 
The accuracy of this method depends on the accuracy in predicting the interface location within 
a cell, as well as the applied mesh and the time step. 

In the VOF method outlined above, a single set of momentum equations describes the flow 
field. The two fluids in a cell are constrained to move with equal velocities. In reality, however, for 
two fluids of different properties (density, viscosity) a strong shear can occur close to the interface, 
causing quite different phase velocities. 

By applying the donor-acceptor method in a two-fluid model, one should be able to calculate 
the velocity close to the interface more accurately. However, one has to solve two sets of 
equations in the single-phase domains. 

Interface tracking. The proposed two-fluid model has been used to test an interface tracking 
scheme, based on the Donor-Acceptor method and also to investigate the influence of different 
interfacial friction models in separated flows. 

Implementation of the interface tracking method depends on the numerical scheme and 
solution procedure applied. The basic idea is to modify the mass flux terms in the conservation 
equations. In a staggered mesh (finite difference scheme), mass flux terms are normally defined as 
products of a phase velocity defined at the cell boundary and a mean mass, without taking into 
account the precise distribution (interface orientation) of the two fluids. This will thus lead to 
a diffusion of sharp interfaces. 

Interface cell 

Figure 1. A view of the interface in a computational mesh 
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(C) (4 
Figure 2. Examples of interface shapes used in the advection of fluids. The donor-acceptor arrangement is shown in (a), 
where the dashed line indicates the left boundary of the total volume being advected. The cross-hatched regions shown in 

(bHd) are the actual amounts of volume fluxed (Hirt and Nichols’) 

Imposing an interface tracking method modifies the mass flux terms according to the location 
of the two fluids inside a spatial mesh. A more detailed description of the applied method will be 
presented in connection with the solution procedure and numerical scheme. 

Interfucial friction. According to Moe and Bendik~en,~ under certain relevant assumptions the 
jump conditions for the momentum balance reduce to the skin drag force only: 

MI= -M,=Mz. ( 5 )  

Interfacial friction is modelled through an extension of the method applied in one-dimensional 
models (e.g. Bendiksen et d4). Assuming the drag force to be proportional to the velocity 
difference squared between the phases, this force can be expressed in Cartesian co-ordinates as 

1 MI=Fflu,lu,, F f = - p  2.5 
2 g ’ A ’  

(6)  1 si 
M: = PI( u , I  u,, F: = 2 p,l: -, A 

where 
u, = uy - u,, 

(7) u, = v, - v g ,  
The interfacial perimeter, Si, denotes the area of the interface and A is the volume of the actual 
flowfield. Although a simplification, the drag force (6) is quite general, and incorporates a variety 
of different physical interfacial conditions. Several types of interfacial friction factors (Ai) have 
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Figure 3. Elongated bubble flow 

been investigated. A modification of the Wallis7 formula, 

I f  = np = 0-02 (1 + 75h,),  

97 1 

Ul 

(8) 

where h, is the liquid hold-up, has been found to describe stratified or annular flows quite well. 
This interfacial condition applies to stratified or annular flows and gives a linear increase in the 
interfacial drag with increasing liquid hold-up. 

An extreme approach to modelling interfacial friction is to impose a very strong coupling in the 
main (axial) flow direction and no interaction in the transverse direction 

A;= 10-3, I.:= 1.0 x 106. (9) 
Applying a strong interaction in the main flow direction is physically correct when approaching 
the interface in the limit, as this results in a no-slip condition. When this relation is used inside 
a computational mesh, it will force the velocities of the two phases to be equal ‘close’ to the 
interface. The weak coupling applied in the transverse direction is suitable for interfaces 
dominated by gravity. Relation (9) describes elongated bubbles in a channel or pipe very well; see 
Figure 3. 

Shear stress modelling. On the basis of the assumption of Newtonian fluids, the average stress 
tensor for laminar flow is normally expressed as for single-phase flow: 

T k  = p k ( v u k  + vu,*) -(($ p k  - &)V ’ u k 3 ) ,  (10) 

where p k  and j l k  are the viscosity and the bulk viscosity of phase k,  3 is the unity tensor, and all 
quantities are time averaged. 

For turbulent flow, neglecting possible effects due to interface fluctuations, the Reynolds 
stresses may be expressed as 

T T =  - ) o k U ; U ; ,  (1 1) 
where u; represents the local velocity fluctuations of phase k. 

For single-phase flow the Boussinesq approach is applied to model turbulence. The effective 
turbulent shear stresses are replaced by the product of the mean velocity gradient and the 
‘turbulent viscosity’, pT, which is dependent on the flow field: 

-ptu;u; = p k p z ( v u k  + vu,* -3  (v ’ ULJ) ) .  (12) 
For multiphase or two-phase flow this method cannot be adopted without further justification, as 
the macroscopic averaged equations contain interfaces which are no longer described separately, 
but through the volume fractions ( a k ) .  The problem of turbulence in dispersed flow has been 
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considered by several authors. Normally, it is accounted for in the continuous phase through 
a modified mixing length, a k--E or full Reynold stress model. The thesis by Ellu118 provides 
a recent overview of the problem. 

In our proposed model the Boussinesq approach to turbulence has been applied for each 
phase k: 

(13) 

The turbulent eddy viscosity (p;) will display spatial variations for each phase and will also be 
influenced by the interface. For the flow problems to be studied in this work, average flow 
parameters are not expected to be particularly sensitive to turbulent effects. Thus, the simple 
Prandtl mixing-length hypothesis has been applied as described by Moe and Bendik~en.~ 

Boundary and initial conditions. Remaining closure laws, boundary and initial conditions 
applied are as described by Moe and Bendiksen.’ 

Pk,eff = Pk + 4. 

2.3. Numerical solution procedure 

Equations (1H3) together with the constitutive relations described above yield a set of coupled 
first-order non-linear partial differential equations. The tight coupling between pressure and 
phase velocities requires in general a simultaneous or iterative solution of the mass and mo- 
mentum conservation equations. An efficient and numerically robust solution is obtained by 
combining the mass equation (1) into a ‘volume equation’, as described by Moe and Bendik~en,~ 
or Bendiksen et aL4: 

The numerical solution procedure is based on a first-order semi-implicit finite difference scheme. 
A staggered mesh or Arakawa C-grid has been applied. This type of grid consists of cells where 
velocities are defined on the boundaries and pressures and specific masses are defined inside the 
volumes. 

A semi-implicit method resulting in a split solution procedure at each time step has been 
a ~ p l i e d . ~  Required flow parameters and coefficients are updated based on the state vector 
(velocities, etc.) from the last time step. Velocities and pressures are then calculated from the 
momentum equations and the ‘volume’ equation, using specific masses and volume fractions from 
the previous time step. Under the assumption of no interfacial mass transfer, the mass equations 
are decoupled, and may be solved separately. When specific masses and densities are known, the 
volume fractions can be obtained directly from the definition (mk = akpk). This set of equations is, 
however, overdetermined as the volume relation (ag + a, = 1) also applies. The solution method 
may thus give rise to an error in specific volume, and an iterative volumetric correction procedure 
has been included at each time step. 

Further details on the numerics may be found in the work of Moe and Bendik~en.~ 

Interface tracking. A first approach to track interfaces numerically in the two-fluid model has 
been implemented for interfaces orientated normally to the main flow direction. The original 
scheme is mass conserving, applying mean masses in the ‘donor cell’. Modifying relevant mass 
fluxes, the interface tracking scheme is obtained. For the actual interface, the mass flux terms can 
be modified by simply applying ‘forward’ instead of ‘backward’ specific masses, as shown in 
Figure 4. This will significantly reduce numerical diffusion. The method is easily implemented in 
the finite difference equations. 
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j- 1 j+ 1 j-1 j+l 
Figure 4. A schematic view of the numerical scheme (left: normal scheme, right: modified interfacial tracking scheme) 

The interface tracking scheme may, when a front crosses a boundary, predict a negative specific 
mass of the transported ‘emptying’ fluid in the upstream cell, as well as too much of the other 
phase ( C I ~  <OO, a2 > 1-0 and tll + tlz = 1.0). These ‘extra’ masses are readily corrected for as follows: 

(15) 
m: = ~ 1 ,  j- l , i P l , j - l , i ,  m t  - Z Z , ~ - I , ~ I P ~ , ~ - I , ~  

ml , j ,  i=m1 ,j,i + my 9 1712, j , i = m 2 ,  j , i  + m t .  

3. RESULTS 

3.1. Propagation of a single Taylor bubble in horizontal and inclined channels 

The propagation of elongated bubbles in channels initially filled with liquid, closed at one end 
and open to the atmosphere at the other, has been simulated. The fluids applied were water and 
air, as indicated in Figure 5. 

For horizontal channels Benjamin’ obtained an analytical solution of the bubble propagation 
velocity, applying Bernoulli’s theorem along the bubble surface. 

Ub = 0.5 JW), (16) 
where H is the channel height. 

Applying the model of Moe and Bendik~en,~ the effect of different constant interfacial friction 
factors [equation (9)] on the propagation velocity was investigated. The interfacial friction factor 
across the channel was set constant and equal to in all simulations. The friction factor in the 
propagation direction is the free parameter in this study, and starting at a value of 10, it 
was increased until the velocity of the bubble converged to a constant value. The interface 
tracking scheme was not applied and the contour of the bubble was taken to be where the volume 
fraction is 0.5. 

For low interfacial friction factors a considerable local slip between the phases results, whereas 
high values yield no slip between the phases. The results are shown in Figure 6, where the bubble 
velocity is calculated for a horizontal channel of H =0.70 m. The slip also determines the diffusion 
between the phases, as may be seen from Figure 7. 

The applied time step has been limited by the Courant criterion as discussed by Moe and 
Bendik~en:~ 

At<min -,- 
(A: 

where u and u are characteristic phase velocities in the x- and y-direction, respectively. The 
influence of the time step on the bubble velocity has been investigated. Seven nodes were used 
over the channel height and the same mesh size was applied along the channel. 
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Figure 5. Propagation of elongated bubbles in horizontal and inclined channels. (upper: horizontal channel, lower: 
inclined channel) 

Figure 6. 
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Figure 7. The calculated bubble shape for two different interfacial friction factors, (a) and (b), where the upper figure gives 
the liquid velocity profile and a contour of a=0.5 and the lower one gives contours of a=O, 0.5, 1 

The results are shown in Figure 8 for the three different models, two different interfacial friction 
models and the interface tracking model. The time step applied in the computations has very 
little effect on the bubble velocity for the interfacial tracking scheme and for interfacial friction 
model 2. 

Interfacial friction model 1, equation (S), is a function of the volume fraction, giving friction 
factors in the range 002 <A;, A; < 1.52. As seen from Figure 6, the bubble propagation velocity 
changes rapidly for low friction factors, which may explain the results of model 1 in Figure 8. 

The effect of mesh size on the results was also investigated six, eight and ten nodes across the 
channel height were applied, with equal mesh size (node spacing) along the channel. Within the 
range of nodes tested, no significant influence on the bubble velocity was found for either model; 
see Figure 9. 

A certain effect on bubble velocity was seen for non-uniform mesh size cases. The bubble 
velocity increases with increasing mesh ratio (between the mesh size in the x-direction and the 
mesh size in the y-direction) for all three models, as shown in Figure 10. 
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Figure 8. Dimensionless bubble velocity as a function of the applied time step (Interfacial friction: x model 1 (equation 8), 

* model 2 (equation 9), +Interface tracking) 
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Number of nodes 

Figure 9. Dimensionless bubble velocity versus mesh size (given by the number of nodes across the channel height) 
(Interfacial friction: x model 1 (equation 8), * model 2 (equation 9), +Interface tracking) 

Predicted bubble propagation velocities in horizontal channels of different heights were 
compared to the analytical solution of Benjamin [equation (16)] for all three models, as shown in 
Figure 11. All simulations were performed with seven nodes across the channel and time steps 
limited by the Courant criterion. 

Interfacial friction model 1, which is of the Wallis type where li is a function of liquid hold-up, 
again results in too high a diffusion of the bubble nose and therefore too large a bubble velocity. 
Interfacial friction model 2 and the interface tracking scheme give almost identical results for the 
bubble velocity, which, however, is too low compared to the analytical solution. The deviation 
from the analytical solution is limited to 20% for both models. 
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Figure 10. Dimensionless bubble velocity as a function of mesh ratios (Interfacial friction: x model 1 (equation 8), 
* model 2 (equation 9), +Interface tracking) 
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Figure 1 I .  Bubble velocity in horizontal channels (Interfacial friction: x model 1 (equation S), * model 2 (equation 9), 

+ Interface tracking, -. - Analytical solution9) 

For inclined channels the discrepancies between the interfacial friction models become more 
pronounced. Two different channel inclinations, 5" and 15" with the horizontal, were simulated. 
The average dimensionless velocity for different channel heights are plotted against inclination in 
Figure 12. Again, it is seen that interfacial friction model 2 and the interfacial tracking scheme 
give almost identical results. It may also be concluded that the Wallis type of model for interfacial 
friction leads to very large numerical diffusion, and bubble velocities which are too great. 
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Figure 13. Dimensionless bubble propagation velocities in inclined channels using interfacial friction model 2 

Having assessed that interfacial friction model 2 and the interfacial tracking scheme both give 
reasonable results for inclined channels, model 2 was used to simulate a wider range of channel 
inclinations up to 70" with the horizontal. Predicted dimensionless bubble propagation velocities 
are shown in Figure 13. 

The bubble propagation velocity in circulr pipes has been measured by Zukoski" for inclina- 
tions between horizontal and vertical. The experimental results are shown in Figure 14 for air and 
water, for the case where surface tension effects are negligible (C = 0.001, Z = 40/gpDz) .  
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The predicted results for channels (Figure 13) seem to be qualitatively in reasonable agreement 
with the experimental results for pipes (Figure 14). 

Influence of uiscosity. In the work by Zukoski" the influence of viscosity on bubble propaga- 
tion velocity was studied. For surface tension parameters Z less than 05, the bubble velocity was 
found experimentally to depend on Reynolds number and C as 

WdRe,  XI= Wdm, Z)f(Re) .  (18) 

It was also concluded that the data presented in Figure 15 clearly fall into a high-Reynolds- 
number region, Re > 100, where f (Re)  % 1 and a low-Reynolds-number region, Re < 4, where 

0 

0 

0 20 4 0  60 80 100 
Inclination (degrees) 

Figure 14. Dimensionless bubble propagation velocity in circular pipes, determined experimentally by Zukoskiio 
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IJ 

Figure 15. Influence of Reynolds number (viscosity) on the bubble propagation velocityf= W,(Re, Z)/W,(co, Z), where 
W, is the bubble propagation velocity (Zukoski'") 
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Figure 16. Predicted bubble propagation velocity in a 30" inclined channel for low Reynolds numbersf= U,(Re)/U,(co), 
where Ub is the bubble propagation velocity 

f(Re)<l.  The data show that the value offis independent of the tube inclination for 
30" I cp I 90". 

In the present model, surface tension is neglected, but viscosity may be increased to simulate 
the influence of low Reynolds numbers. A channel of height 0.07 m with an inclination of 30" was 
selected as test case. Ten nodes were used across the channel and the same mesh size was applied 
in the axial direction. The time step was limited by the Courant criterion, and the channel was 
long enough to give a steady bubble motion. Interfacial friction model 2 [equation (9)] was used 
in the calculations. The computational results are given in Figure 16 and agree very well with the 
data of Zukoski for circular pipes. 

3.2. Taylor bubble motion in downwardly-inclined channels 

An extensive experimental study of the motion of long bubbles in inclined tubes was performed 
by Bendiksen,' For all inclinations and velocity regions, he concluded that the experimental data 
were well represented by 

where Co and vo are dependent on the Reynolds and Froude numbers, as well as on surface 
tension and pipe inclination. In particular, he observed that in downwardly inclined pipes the 
bubble turned relative to the liquid flow at a critical liquid flow rate. 

Again, a channel of height 0.07 m was simulated with 10 nodes across the channel. A laminar 
velocity profile was imposed at the inlet for different flow rates. The bubble was given an initial 
idealized shape, as indicated in Figure 17. When the bubble propagates counter-currently against 
the liquid, as in the example shown, some of the initial gas volume is lost to the outlet 
surroundings during the first few time steps. Interfacial friction model 2 was again applied. 

The bubble velocities were computed for three different inclination angles, -2", -5"  and 
- lo", in a range of liquid velocities 0,0<uf<4-0 m/s. The results are shown in Figures 18-20. 

For all three inclinations the predicted bubble velocities fall within three distinct regions. The 
first one, for the lowest liquid velocities, corresponds to the region where Bendiksen" found the 
bubble nose pointing against the liquid velocity, and where both Co < 1 and vo < 0. 

u, = Co u, + v o ,  (19) 
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Figure 18. Predicted bubble velocity in a 7 cm high and 2" downwardly inclined channel 
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Figure 19. Predicted bubble velocity in a 7 cm high and 5" downwardly inclined channel 

When the liquid velocity is increased, a critical velocity is obtained above which the bubble 
turns, and its motion is aligned with that of the liquid. At still higher liquid velocities (region 3, 
Figure 18), Co> 1 and uo>O, and the bubble behaves much as in horizontal flow. The present 
model is not able to treat properly centred bubbles in a channel. However, it is clearly seen that 
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Figure 20. Predicted bubble velocity in a 7 cm high and lo" downwardly inclined channel 

the liquid film below the bubble is decreased from region 1 to region 2, and that there is 
a corresponding sharp change in Co, uo and thus in bubble velocity, as observed by Bendiksen." 

3.3. Taylor bubble shape in inclined channels 

Finally, the powerful potential of this type of two-fluid models is demonstrated through 
a simulation of changes in Taylor bubble shapes with flow rate. At high liquid velocities in 
horizontal and inclined pipes, the tip of a large gas bubble will be increasingly centred. This gives 
C ,  = 1.2 and uo =0, as observed empirically by Bendiksen." This is obviously a 3D effect where 
the tip of the bubble, e.g. in a horizontal pipe moves downwards due to the negative drift force 
caused by the parabolic local liquid velocity profile. 

This may be seen from simulations of the motion of a gas bubble in a 2D channel with 
a downward inclination of 5" and a height 0-07 m. With an inlet liquid velocity, uL = 3 m/s, it is 
apparent from Figure 21 that the gas bubble tends to move to the centre of the channel during the 
first time steps. However, the liquid film above the gas bubble is also influenced by the 
gravitational force, and starts to fall through the bubble, which then disintegrates. In an inclined 
pipe the liquid film around the bubble will instead start to move around the pipe wall, centring 
the bubble tip and keeping the bubble intact, as observed by Bendiksen." 

The simulations performed indicate, however, that the prescnt physical model, although in 
a 3D version, would be a powerful tool in analysing these types of slug phenomena. 

3.4. Initiation o j  slugs in upwardly inclined chunnels 

The initiation of slug flow in upwardly inclined channels at fairly low gas and liquid flow rates 
has been simulated. Slugs form as a result of a very complicated liquid accumulation process, 
starting with the appearance of large waves giving increased interfacial friction and counteracting 
gravity. 
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Figure 22. Initiation of slugs in an upwardly inclined channel of 20" and height 0.035 m 
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A channel of height 0.035 m and length 2.9 m with an inclination of 20" was simulated. Ten 
nodes were used across the channel and 290 in the axial direction, giving a mesh size ratio of 
nearly three. Again, interfacial friction model 2 was applied. The simulation started with a liquid 
film flow corresponding to a volume fraction of 30% with superficial velocities V,,=O.lS m/s and 
Us, = 1.4 m/s (V,, = zcuG and Us, = zgug). 

The results, presented in Figure 22, show several interesting phenomena characteristic of slug 
flow. As observed by Bendiksen and Espedal," slugs are easily formed but do not always survive. 
A necessary condition for a given slug to grow is that it scoops up the liquid film in front of it at 
a larger rate than it sheds liquid at its tail. At the rather high inclination (20') applied in the 
simulation, the effect of gravity on the liquid film is large. This results in an extremely non-steady 
dynamic type of flow, which is observed experimentally, but which also complicates direct 
comparisons with experimental data. 

4. CONCLUSIONS 

A new type of transient multidimensional two-fluid model3 has been applied to simulate stratified 
and intermittent flows. The numerical method is based on a first-order semi-implicit finite 
difference scheme, and a direct two-step solution method, using a separate equation for the 
pressure. Two different types of interfacial friction models and an interfacial tracking scheme have 
been investigated. In general, the numerical scheme was found to be well suited to transient and 
intermittent flow analysis. 

Simulation of Taylor bubble propagation in horizontal and inclined channels shows that the 
Wallis type of interfacial friction model gives large numerical diffusion at the interface, especially 
for inclined channels. The interfacial friction model 2, with no-slip conditions at the interfaces, 
gives less diffusion, and has been applied for stratified and intermittent flows. Further develop- 
ment of the interfacial friction model is required. 

The proposed interfacial tracking scheme proved to be numerically stable and applicable to 
open Taylor bubbles. However, it gives very similar results to interfacial friction model 2, which is 
much simpler. In the case of bubble motion in downwardly inclined channels, the interfacial 
trackng scheme in its present form was numerically unstable. For bubbles not exposed to the 
atmosphere, a pressure correction over the interface, or more precisely within a cell containing the 
interface, is required. 

Numerical diffusion of the interface was shown by Moe and Bendiksen3 to depend also on the 
discretization of the convective terms in the momentum equations. The convective terms have 
been linearized in the present model, although the strongly accelerated flow field at the front and 
tail of a Taylor bubble makes this simplification questionable. 

The results on Taylor bubble propagation in horizontal channels show satisfactory agreement 
with analytical solutions. Simulations in inclined channels predict the same trend for the bubble 
propagation as was observed experimentally in pipes. The same agreement holds for the effect of 
viscosity (low Reynolds number) on bubble propagation. 

The bubble turning process in downflow illustrates the capability of the model to handle 
counter-current flow. At low rates a clear bubble nose shape is seen, pointing against the liquid 
flow. The model also predicts a critical velocity above which the bubbles turn and the motion is 
aligned with that of the liquid. 

Initiation of slug flow in upwardly inclined channels has been simulated dynamically. The 
computations show, as observed experimentally, that slugs are easily formed but do not always 
survive. 
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APPENDIX: NOMENCLATURE 

Greek letters 

CL 

r 
rp 
i 
P 

P 
V 

0 

z 
3 
fJ 

area 
pipe radius 
pipe diameter 
energy source 
internal energy 
function 
gravity (body force) 
channel height 
mixing length 
momentum source 
force due to change in mean curvature 
specific mass, phase k (mk = @&) 
pressure 
heat flux 
radial co-ordinate 
mean curvature 
Reynolds number 
velocity 
velocity, x-component 
velocity, y-component 
velocity, z-component 
Cartesian co-ordinates 

void fraction 
mass transfer rate 
inclination 
bulk viscosity, friction factor 
viscosity 
kinematic viscosity 
density 
surface tension 
stress tensor 
unity tensor 
stress tensor 
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Subscripts 

g gas phase 
i interface 
i,j directional indices 
k phase 
m mixture 
G liquid phase 

Superscripts 

n time index 
T turbulent 
I Fluctuating component 
* transposed (tensor) 
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